Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 24: 62-70, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977273

RESUMO

Understanding pulmonary diseases requires robust culture models that are reproducible, sustainable in long-term culture, physiologically relevant, and suitable for assessment of therapeutic interventions. Primary human lung cells are physiologically relevant but cannot be cultured in vitro long term and, although engineered organoids are an attractive choice, they do not phenotypically recapitulate the lung parenchyma; overall, these models do not allow for the generation of reliable disease models. Recently, we described a new cell culture platform based on H441 cells that are grown at the air-liquid interface to produce the SALI culture model, for studying and correcting the rare interstitial lung disease surfactant protein B (SPB) deficiency. Here, we report the characterization of the effects of SALI culture conditions on the transcriptional profile of the constituent H441 cells. We further analyze the transcriptomics of the model in the context of surfactant metabolism and the disease phenotype through SFTPB knockout SALI cultures. By comparing the gene expression profile of SALI cultures with that of human lung parenchyma obtained via single-cell RNA sequencing, we found that SALI cultures are remarkably similar to human alveolar type II cells, implying clinical relevance of the SALI culture platform as a non-diseased human lung alveolar cell model.

2.
Nat Genet ; 53(11): 1606-1615, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34737427

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.


Assuntos
COVID-19/complicações , Cromossomos Humanos Par 3/genética , Transição Epitelial-Mesenquimal , Pulmão/virologia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/isolamento & purificação , Fatores de Transcrição/genética , COVID-19/transmissão , COVID-19/virologia , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Fatores de Transcrição/metabolismo
3.
Sci Rep ; 11(1): 21484, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728747

RESUMO

Epidemiological efforts to model the spread of SARS-CoV-2, the virus that causes COVID-19, are crucial to understanding and containing current and future outbreaks and to inform public health responses. Mutations that occur in viral genomes can alter virulence during outbreaks by increasing infection rates and helping the virus evade the host immune system. To understand the changes in viral genomic diversity and molecular epidemiology in Oxford during the first wave of infections in the United Kingdom, we analyzed 563 clinical SARS-CoV-2 samples via whole-genome sequencing using Nanopore MinION sequencing. Large-scale surveillance efforts during viral epidemics are likely to be confounded by the number of independent introductions of the viral strains into a region. To avoid such issues and better understand the selection-based changes occurring in the SARS-CoV-2 genome, we utilized local isolates collected during the UK's first national lockdown whereby personal interactions, international and national travel were considerably restricted and controlled. We were able to track the short-term evolution of the virus, detect the emergence of several mutations of concern or interest, and capture the viral diversity of the region. Overall, these results demonstrate genomic pathogen surveillance efforts have considerable utility in controlling the local spread of the virus.


Assuntos
COVID-19/epidemiologia , Variação Genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/virologia , Genoma Viral , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Quarentena , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Estações do Ano , Glicoproteína da Espícula de Coronavírus/genética , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma
4.
Mol Ther Methods Clin Dev ; 20: 237-246, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426150

RESUMO

Surfactant protein B (SPB) deficiency is a severe monogenic interstitial lung disorder that leads to loss of life in infants as a result of alveolar collapse and respiratory distress syndrome. The development and assessment of curative therapies for the deficiency are limited by the general lack of well-characterized and physiologically relevant in vitro models of human lung parenchyma. Here, we describe a new human surfactant air-liquid interface (SALI) culture model based on H441 cells, which successfully recapitulates the key characteristics of human alveolar cells in primary culture as evidenced by RNA and protein expression of alveolar cell markers. SALI cultures were able to develop stratified cellular layers with functional barrier properties that are stable for at least 28 days after air-lift. A SFTPB knockout model of SPB deficiency was generated via gene editing of SALI cultures. The SFTPB-edited SALI cultures lost expression of SPB completely and showed weaker functional barrier properties. We were able to correct this phenotype via delivery of a lentiviral vector pseudotyped with Sendai virus glycoproteins F/HN expressing SPB. We believe that SALI cultures can serve as an important in vitro research tool to study human alveolar epithelium, especially for the development of advanced therapy medicinal products targeting monogenic disorders.

5.
Nucleic Acids Res ; 49(3): e16, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33290561

RESUMO

The gene and cell therapy fields are advancing rapidly, with a potential to treat and cure a wide range of diseases, and lentivirus-based gene transfer agents are the vector of choice for many investigators. Early cases of insertional mutagenesis caused by gammaretroviral vectors highlighted that integration site (IS) analysis was a major safety and quality control checkpoint for lentiviral applications. The methods established to detect lentiviral integrations using next-generation sequencing (NGS) are limited by short read length, inadvertent PCR bias, low yield, or lengthy protocols. Here, we describe a new method to sequence IS using Amplification-free Integration Site sequencing (AFIS-Seq). AFIS-Seq is based on amplification-free, Cas9-mediated enrichment of high-molecular-weight chromosomal DNA suitable for long-range Nanopore MinION sequencing. This accessible and low-cost approach generates long reads enabling IS mapping with high certainty within a single day. We demonstrate proof-of-concept by mapping IS of lentiviral vectors in a variety of cell models and report up to 1600-fold enrichment of the signal. This method can be further extended to sequencing of Cas9-mediated integration of genes and to in vivo analysis of IS. AFIS-Seq uses long-read sequencing to facilitate safety evaluation of preclinical lentiviral vector gene therapies by providing IS analysis with improved confidence.


Assuntos
Proteína 9 Associada à CRISPR , Sequenciamento por Nanoporos/métodos , Análise de Sequência de DNA/métodos , Integração Viral , Animais , Linhagem Celular , DNA Viral/análise , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Provírus/genética
6.
Viruses ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003635

RESUMO

Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Lentivirus , Animais , Técnicas de Transferência de Genes , HIV-1/genética , Humanos , Lentivirus/genética , Lentivirus Felinos , Retroviridae/genética , Transgenes
7.
Expert Opin Biol Ther ; 20(10): 1187-1201, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32602788

RESUMO

INTRODUCTION: Vesicular stomatitis virus (VSV) has long been a useful research tool in virology and recently become an essential part of medicinal products. Vesiculovirus research is growing quickly following its adaptation to clinical gene and cell therapy and oncolytic virotherapy. AREAS COVERED: This article reviews the versatility of VSV as a research tool and biological reagent, its use as a viral and vaccine vector delivering therapeutic and immunogenic transgenes and an oncolytic virus aiding cancer treatment. Challenges such as the immune response against such advanced therapeutic medicinal products and manufacturing constraints are also discussed. EXPERT OPINION: The field of in vivo gene and cell therapy is advancing rapidly with VSV used in many ways. Comparison of VSV's use as a versatile therapeutic reagent unveils further prospects and problems for each application. Overcoming immunological challenges to aid repeated administration of viral vectors and minimizing harmful host-vector interactions remains one of the major challenges. In the future, exploitation of reverse genetic tools may assist the creation of recombinant viral variants that have improved onco-selectivity and more efficient vaccine vector activity. This will add to the preferential features of VSV as an excellent advanced therapy medicinal product (ATMP) platform.


Assuntos
Pesquisa Biomédica , Ensaios Clínicos como Assunto , Vetores Genéticos/genética , Terapia Viral Oncolítica/métodos , Vesiculovirus/fisiologia , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Vetores Genéticos/uso terapêutico , Humanos , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/fisiologia , Vesiculovirus/genética
8.
Mol Ther Nucleic Acids ; 17: 126-137, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31254925

RESUMO

Vesicular stomatitis virus Indiana strain glycoprotein (VSVind.G) mediates broad tissue tropism and efficient cellular uptake. Lentiviral vectors (LVs) are particularly promising, as they can efficiently transduce non-dividing cells and facilitate stable genomic transgene integration; therefore, LVs have an enormous untapped potential for gene therapy applications, but the development of humoral and cell-mediated anti-vector responses may restrict their efficacy. We hypothesized that G proteins from different members of the vesiculovirus genus might allow the generation of a panel of serotypically distinct LV pseudotypes with potential for repeated in vivo administration. We found that mice hyperimmunized with VSVind.G were not transduced to any significant degree following intravenous injection of LVs with VSVind.G envelopes, consistent with the thesis that multiple LV administrations would likely be blunted by an adaptive immune response. Excitingly, bioluminescence imaging studies demonstrated that the VSVind-neutralizing response could be evaded by LV pseudotyped with Piry and, to a lesser extent, Cocal virus glycoproteins. Heterologous dosing regimens using viral vectors and oncolytic viruses with Piry and Cocal envelopes could represent a novel strategy to achieve repeated vector-based interventions, unfettered by pre-existing anti-envelope antibodies.

9.
Mol Ther Methods Clin Dev ; 10: 303-312, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30182034

RESUMO

Retroviral and lentiviral vectors often use the envelope G protein from the vesicular stomatitis virus Indiana strain (VSVind.G). However, lentivector producer cell lines that stably express VSVind.G have not been reported, presumably because of its cytotoxicity, preventing simple scale-up of vector production. Interestingly, we showed that VSVind.G and other vesiculovirus G from the VSV New Jersey strain (VSVnj), Cocal virus (COCV), and Piry virus (PIRYV) could be constitutively expressed and supported lentivector production for up to 10 weeks. All G-enveloped particles were robust, allowing concentration and freeze-thawing. COCV.G and PIRYV.G were resistant to complement inactivation, and, using chimeras between VSVind.G and COCV.G, the determinant for complement inactivation of VSVind.G was mapped to amino acid residues 136-370. Clonal packaging cell lines using COCV.G could be generated; however, during attempts to establish LV producer cells, vector superinfection was observed following the introduction of a lentivector genome. This could be prevented by culturing the cells with the antiviral drug nevirapine. As an alternative countermeasure, we demonstrated that functional lentivectors could be reconstituted by admixing supernatant from stable cells producing unenveloped virus with supernatant containing envelopes harvested from cells stably expressing VSVind.G, COCV.G, or PIRYV.G.

10.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232190

RESUMO

Vesicular stomatitis virus Indiana strain G protein (VSVind.G) is the most commonly used envelope glycoprotein to pseudotype lentiviral vectors (LV) for experimental and clinical applications. Recently, G proteins derived from other vesiculoviruses (VesG), for example, Cocal virus, have been proposed as alternative LV envelopes with possible advantages over VSVind.G. Well-characterized antibodies that recognize VesG will be useful for vesiculovirus research, development of G protein-containing advanced therapy medicinal products (ATMPs), and deployment of VSVind-based vaccine vectors. Here, we show that one commercially available monoclonal antibody, 8G5F11, binds to and neutralizes G proteins from three strains of VSV, as well as Cocal and Maraba viruses, whereas the other commercially available monoclonal anti-VSVind.G antibody, IE9F9, binds to and neutralizes only VSVind.G. Using a combination of G protein chimeras and site-directed mutations, we mapped the binding epitopes of IE9F9 and 8G5F11 on VSVind.G. IE9F9 binds close to the receptor binding site and competes with soluble low-density lipoprotein receptor (LDLR) for binding to VSVind.G, explaining its mechanism of neutralization. In contrast, 8G5F11 binds close to a region known to undergo conformational changes when the G protein moves to its postfusion structure, and we propose that 8G5F11 cross-neutralizes VesGs by inhibiting this.IMPORTANCE VSVind.G is currently regarded as the gold-standard envelope glycoprotein to pseudotype lentiviral vectors. However, recently other G proteins derived from vesiculoviruses have been proposed as alternative envelopes. Here, we investigated two commercially available anti-VSVind.G monoclonal antibodies for their ability to cross-react with other vesiculovirus G proteins, identified the epitopes they recognize, and explored their neutralization activity. We have identified 8G5F11, for the first time, as a cross-neutralizing antibody against several vesiculovirus G proteins. Furthermore, we elucidated the two different neutralization mechanisms employed by these two monoclonal antibodies. Understanding how cross-neutralizing antibodies interact with other G proteins may be of interest in the context of host-pathogen interaction and coevolution, as well as providing the opportunity to modify the G proteins and improve G protein-containing medicinal products and vaccine vectors.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Epitopos/imunologia , Glicoproteínas de Membrana/imunologia , Estomatite Vesicular/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Antígenos Virais/genética , Antígenos Virais/metabolismo , Reações Cruzadas , Epitopos/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Testes de Neutralização , Filogenia , Homologia de Sequência , Estomatite Vesicular/metabolismo , Estomatite Vesicular/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...